全球领先的表面张力测量技术

热线:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

论文Info

荣誉客户/Honor customers

               

拜耳公司

               

同济大学

                

联合大学

                

美国保洁

                

美国强生

               

瑞士罗氏

当前位置首页 > 论文

朗缪尔张力仪论文

来源:本站原创 浏览 465 次 发布时间:2018-03-27

朗缪尔张力仪
    Air-Liquid Interfaces of Aqueous Solutions Containing Ammonium and Sulfate:? Spectroscopic and Molecular Dynamics Studies
    S. Gopalakrishnan, P. Jungwirth, D. J. Tobias, H. C. Allen
    J. Phys. Chem. B, 2005, 109 (18), pp 8861-8872
    DOI: 10.1021/jp0500236

Comparison of the Membrane Association of Two Antimicrobial Peptides, Magainin 2 and Indolicidin 
    H. Zhao, J.P Mattila, J. M. Holopainen, P. K.J. Kinnunen (2001)
    Biophy. J. Volume 81, Issue 5, Pages 2979-2991
    DOI:10.1016/S0006-3495(01)75938-3

Antibacterial Activities of Rhodamine B-Conjugated Gelsolin-Derived Peptides Compared to Those of the Antimicrobial Peptides Cathelicidin LL37, Magainin II, and Melittin 
    R. Bucki, J. J. Pastore, P. Randhawa, R Vegners, D. J. Weiner, P.A. Janmey (2004)
    Antimicrobial Agents and Chemotherapy, p. 1526-1533, Vol. 48, No. 5
    DOI: 10.1128/AAC.48.5.1526-1533.2004

Interaction of Antimicrobial Peptide Temporin L with Lipopolysaccharide In Vitro and in Experimental Rat Models of Septic Shock Caused by Gram-Negative Bacteria
    A. Giacometti, O. Cirioni, R. Ghiselli, F. Mocchegiani, F. Orlando, C. Silvestri, A. Bozzi, A. Di Giulio, C. Luzi, M.L. Mangoni, D. Barra, V. Saba, G. Scalise, A. C. Rinaldi (2006)
    Antimicrobial Agents and Chemotherapy, p. 2478-2486, Vol. 50, No. 7
    DOI:10.1128/AAC.01553-05

Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: Implications for a novel mechanism of action
    H. Zhao, R. Sood, A. Jutilaa, S. Bose, G. Fimland, J. Nissen-Meyer, P. K.J. Kinnunen (2006)
    Biochimica et Biophysica Acta (BBA) – Biomembranes, Volume 1758, Issue 9, Pages 1461-1474
    Membrane Biophysics of Antimicrobial Peptides
    DOI:10.1016/j.bbamem.2006.03.037

Surfactant properties of atmospheric and model humic-like substances (HULIS) 
    I. Taraniuk, E. R. Graber, A. Kostinski, and Y. Rudich (2007)
    Geophysical Research Letters, Vol. 34, L16807,
    DOI:10.1029/2007GL029576

Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility
    P. Rooney, N.l P.J. Price, K. J. Ray, T.M. Kuo (2009)
    FEMS Microbiology Letters, Volume 295, Issue 1, pages 82–87,
    DOI: 10.1111/j.1574-6968.2009.01581.x

Do surface active substances from water repellent soils aid wetting?
    E. R. Graber, S. Tagger,. R. Wallach (2007)
    European Journal of Soil Science, Volume 58, Issue 6, pages 1393–1399
    DOI: 10.1111/j.1365-2389.2007.00951.x

Duramycin-Induced Destabilization of a Phosphatidylethanolamine Monolayer at the Air−Water Interface Observed by Vibrational Sum-Frequency Generation Spectroscopy
    I. I. Rzeznicka, Maria Sovago, E. H. G. Backus, M Bonn, T Yamada, T Kobayashi, M Kawai (2010)
    Langmuir, 26 (20), pages 16055–16062
    DOI: 10.1021/la1028965

Lecithin retinol acyltransferase and its S175R mutant have a similar secondary structure content and maximum insertion pressure but different enzyme activities
    S. Bussières, L. Cantin, C. Salesse (2011)
    Experimental Eye Research,
    DOI:10.1016/j.exer.2011.07.015

Phospholipid monolayer hydrolysis by cytosolic phospholipase A2 gamma and lecithin retinol acyl transferase
    M. Méthot, E. Demers, S. Bussières, B. Desbat, R. Breton, C. Salesse (2008)
    Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 321, Issues 1-3, 15 May 2008, Pages 147-150
    DOI:10.1016/j.colsurfa.2007.11.027

Interactions of the Antimicrobial Peptides Temporins with Model Biomembranes. Comparison of Temporins B and L 
    H. Zhao, A. C. Rinaldi, A. Di Giulio, M, Simmaco, and P. K. J. Kinnunen (2002)
    Biochemistry, 41 (13), pp 4425–4436
    DOI: 10.1021/bi011929e

A Lipid-Specific Toxin Reveals Heterogeneity of Sphingomyelin-Containing Membranes
    R. Ishitsuka, Akiko Yamaji-Hasegawa, A. Makino, Y. Hirabayashi, T. Kobayashi (2004)
    Biophysical Journal, Volume 86, Issue 1, Pages 296-307
    DOI:10.1016/S0006-3495(04)74105-3

Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein
    J. Guillén, P. K.J. Kinnunen, J. Villalaína (2008)
    Biochimica et Biophysica Acta (BBA) – Biomembranes, Volume 1778, Issue 12,, Pages 2765-2774
    DOI:10.1016/j.bbamem.2008.07.021

Interaction of Vitreoscilla Hemoglobin with Membrane Lipids
    A. C. Rinaldi, A. Bonamore, A. Macone, A. Boffi, A. Bozzi, A. Di Giulio (2006)
    Biochemistry, 45 (13), pp 4069–4076
    DOI: 10.1021/bi052277n

Surface Studies of Aqueous Methanol Solutions by Vibrational Broad Bandwidth Sum Frequency Generation Spectroscopy 
    G. Ma and H. C. Allen (2003)
    J. Phys. Chem. B, 107 (26), pp 6343–6349
    DOI: 10.1021/jp027364t

Femtosecond time-resolved and two-dimensional vibrational sum frequency spectroscopic instrumentation to study structural dynamics at interfaces
    Ghosh, M. Smits, J. Bredenbeck, N. Dijkhuizen, and M. Bonn (2008)
    Rev. Sci. Instrum. 79, 093907
    DOI:10.1063/1.2982058

Interaction of a peptide corresponding to the loop domain of the S2 SARS-CoV virus protein with model membranes
    J. Guillén, R. F. M. De Almeida, M. Prieto and J. Villalaín (2009)
    Mol. Memb. Biol. Vol. 26, No. 4, Pages 236-248
    DOI:10.1080/09687680902926203

Characterization of fatty amides produced by lipase-catalyzed amidation of multi-hydroxylated fatty acids
    W. E. Levinsona, T. M. Kuoa, G. Knothe (2008)
    Bioresource Technology, Volume 99, Issue 7, Pages 2706-2709
    DOI:10.1016/j.biortech.2007.04.058

Binding of LL-37 to model biomembranes: Insight into target vs host cell recognition
    R. Sood, Y. Domanov, M Pietiäinen, V. P. Kontinen, P. K.J. Kinnunen (2008)
    Biochimica et Biophysica Acta (BBA) – Biomembranes, Volume 1778, Issue 4, Pages 983-996
    DOI:10.1016/j.bbamem.2007.11.016



返回列表