合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 无机粒子对TPAE界面张力、发泡、抗收缩行为的影响(三)
> 液体界面的表面张力和界面张力的测量方法
> 表面张力仪分析生物表面活性剂对菲、1-硝基萘的增溶与洗脱效果和机制
> 中科院江雷及团队提出铺展概念及其表征方法
> 不同质量浓度沥青质溶液界面张力、界面剪切黏度及粒径分布图【上】
> 利用超微量天平制备微孔淀粉处理含Cu(II)离子染料废水
> 羧酸盐型Gemini表面活性剂GAC-31合成条件及表、界面活性研究(二)
> 表面张力仪铂金环、铂金板两种测试方法的不同
> 甜菜碱表面活性剂TAC制备方法及表面张力测定(二)
> 弯曲界面产生的额外附加压力,在力学分析上应该和哪个力平衡?
推荐新闻Info
-
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(二)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(一)
> 典型离子型与非离子型起泡剂的界面行为对泡沫性能的影响机制
> 新无氰白铜锡电镀液及电镀方法可降低表面张力,促进镀液对复杂工件的润湿
> 一种耐超高温酸液体系、制备方法及其应用
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(四)
> 复合驱中聚合物与阴离子表面活性剂的协同作用研究
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——结果、结论
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——摘要、实验方法
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(三)
交替型LB膜分析仪工作原理
来源:奈奈生 浏览 1438 次 发布时间:2023-02-08
工作原理
位于气-液或液-液界面处不可溶的功能性分子、纳米颗粒、纳米线或微粒所形成的单分子层可定义为Langmuir膜。这些分子能够在界面处自由移动,具有较强的流动性,易于控制其堆积密度,研究单分子层的行为。将材料沉积在浅池(称顶槽)中的水亚相上,可以得到Langmuir膜。在滑障的作用下,单分子层可以被压缩。表面压力即堆积密度可以通过Langmuir膜分析仪的压力传感器进行控制。
在进行典型的等温压缩测试时,单分子层先从二维的气相(G)转变到液相(L)最后形成有序的固相(S)。在气相中,分子间的相互作用力比较弱;当表面积减小,分子间的堆积更为紧密,并开始发生相互作用;在固相时,分子的堆积是有序的,导致表面压迅速增大。当表面压达到最大值即塌缩点后,单分子层的堆积不再可控。
图1单分子层膜状态受表面压力增加的影响
LB膜沉积过程是将样品从单分子层中垂直拉出(图2a),通过反复沉积技术可制备多层LB膜(图2b),亲水性及疏水性样品均可在液相或气相中沉积为单分子层。
图2(a).LB沉积过程示意图;(b).多层单分子膜的制备
交替型LB膜分析仪的镀膜过程如图3所示。当使用两个单分子层压缩沉积池和一个空白沉积池时,可实现交替镀膜,浸渍过程可在3个沉积池中选择任意路径多次循环(图3a);在共同的亚相(浅蓝色)上方,有两种不同的单分子层(紫色和深蓝色)(图3b);上臂将样品向下通过单分子膜,由下臂接住样品。沉积循环也可从亚相开始,进行第一层镀膜(图3c);下臂可根据需要旋转到另一单分子层的沉积池或空白沉积池中,改变沉积池(图3d);下臂提起样品,传递给上臂(样品从任意一侧通过两个单分子层中任意一个),进行第二层镀膜(图3e)。
图3(a).交替沉积池构造示意;(b).样品在在夹具上;(c).第一层镀膜;(d).改变沉积池;(e).第二层镀膜