合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
推荐新闻Info
-
> 不同质量浓度沥青质溶液界面张力、界面剪切黏度及粒径分布图【下】
> 不同质量浓度沥青质溶液界面张力、界面剪切黏度及粒径分布图【上】
> 超微量天平的核心作用及涉及的实验
> 拉脱法测量液体表面张力系数实验原理、缺点及改进方法
> 手机实验软件测量液体表面张力系数VS传统实验效果比较
> 基于液-液界面张力(γL–L)的界面调控非均相微乳电解液设计新策略
> 不同温度下可溶解聚乙二醇低共熔溶剂的密度、电导率、表面张力等性质(二)
> 不同温度下可溶解聚乙二醇低共熔溶剂的密度、电导率、表面张力等性质(一)
> 表面张力测量科学:从经典原理到现代智能操作(以Kibron表面张力仪为例)
> 小桐子生物柴油制备方法、氧化程度与表面张力的相关性分析(二)
通过柔性叶片流涂膜的超支化聚合物结构——结论、致谢!
来源:上海谓载 浏览 1708 次 发布时间:2021-10-25
结论
总之,我们已经描述了通过流涂形成聚苯乙烯溶液的超支化结构。 超支化结构的几何形状受以下因素的影响 基材的表面能(即 UVO 暴露时间), 集中或停止时间,并设定距离。 图案 是马兰戈尼流动与随后在拉伸弯月面中产生的摩擦之间竞争的结果 程序化流涂过程中的振荡。 了解流体力学和流动不稳定性之间的这种平衡 可能会导致在结构上创造新的制造方法 集成组件。
致谢
感谢 Joseph W. Krumpfer 博士和 Thomas McCarthy 教授在硅烷表面改性方面的帮助,感谢 Lang Chen 帮助测量表面张力。 我们感谢中心 大学的分层制造 (CMMI-1025020) 马萨诸塞州的财政支持。 作者声明没有 相互竞争的经济利益。
参考文献和注释
1 J. Grisolia, B. Viallet, C. Amiens, S. Baster, A. S. Cordan, Y. Leroy, C. Soldano, J. Brugger, L. Ressier, Nanotechnology 2009, 20, 355303.
2 J. Huang, F. Kim, A. R. Tao, S. Connor, P. Yang, Nat. Mater. 2005, 4, 896.
3 T. Kraus, L. Malaquin, H. Schmid, Nanotechnology 2007, 2, 570.
4 S. Kumar, Ann. Rev. Fluid Mech. 2015, 47, 67.
5 J. Huang, R. Fan, S. Connor, P. Yang, Angew Chem. Int. Ed. 2007, 46, 2414.
6 D. D. Brewer, T. Shibuta, L. Francis, S. Kumar, M. Tsapatsis, Langmuir 2011, 27, 11660.
7 C. Hsueh, C. L. Moraila Martınez, F. Doumenc, M. RodrıguezValverde, B. Guerrier, Chem. Eng. Process Process Intensif. 2013, 68, 64.
8 Y. Cai, B. Z. Newby, J. Am. Chem. Soc. 2008, 130, 6076.
9 D. J. Harris, J. A. Lewis, Langmuir 2008, 24, 3681.
10 S. Hong, J. Xia, Z. Lin, Adv. Mater. 2007, 19, 1413.
11 H. Kim, C. Lee, P. Sudeep, T. Emrick, A. J. Crosby, Adv. Mater. 2010, 22, 4600.
12 D. Y. Lee, J. T. Pham, J. Lawrence, C. H. Lee, C. Parkos, T. Emrick, A. J. Crosby, Adv. Mater. 2013, 25, 1248.
13 C. M. Stafford, K. E. Roskov, T. H. Epps, M. J. Fasolka, Rev. Sci. Instrum. 2006, 77, 023908.
14 S. W. Hong, J. Xia, M. Byun, Q. Zou, Z. Lin, Macromolecules 2007, 40, 2831.
15 A. Oron, S. H. Davis, S. G. Bankoff, Rev. Mod. Phys. 1997, 69, 931.
16 R. V. Craster, O. K. Matar, Rev. Mod. Phys. 2009, 81, 1131.
17 S. V. Roberson, A. J. Fahey, A. Sehgal, A. Karim, Appl. Surf. Sci. 2002, 200, 150.
18 R. Deegan, Phys. Rev. E. Stat. Phys. Plasmas Fluids. Relat. Interdiscip. Topics 2000, 61, 475.
19 V. Nguyen, K. Stebe, Phys. Rev. Lett. 2002, 88, 164501.
20 H. Hu, R. G. Larson, J. Phys. Chem. B 2006, 110, 7090.
21 B. M. Weon, J. H. Je, Phys. Rev. E 2013, 87, 013003.
22 H. Bodiguel, J. Leng, Soft Matter 2010, 6, 5451.
23 P. Kavehpour, B. Ovryn, G. H. McKinley, Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 409.
24 F. Doumenc, E. Chenier, B. Trouette, T. Boeck, C. Delcarte, B. Guerrier, M. Rossi, Int. J. Heat Mass Transf. 2013, 63, 336.
25 F. Doumenc, B. Guerrier, Europhys. Lett. 2013, 103, 14001.
26 T. Kajiya, C. Monteux, T. Narita, F. Lequeux, M. Doi, Langmuir 2009, 25, 6934.
27 A. Fournier, J. B. Cazabat, Europhys. Lett. 1992, 20, 517.
28 28P. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena, Springer Science And Business Media: New York, 2004.
29 B. H. Yabu, M. Shimomura, Adv. Funct. Mater. 2005, 15, 575.
30 C. Monteux, Y. Elmaallem, T. Narita, F. Lequeux, Europhys. Lett. 2008, 83, 34005.
31 B. Trouette, E. Chenier, F. Doumenc, C. Delcarte, B. Guerrier, Phys. Fluids 2012, 24, 074108.
32 J. R. A. Pearson, J. Fluid Mech. 1958, 4, 489.
33 B. T. Poh, B. T. Ong, Eur. Polym. J. 1984, 20, 975.
34 C. C. Han, A. Z. Akcasu, Polymer (Guildf) 1981, 22, 1165.
35 C. L. Bower, E. A. Simister, E. Bonnist, K. Paul, N. Pightling, T. D. Blake, AICHE J. 2007, 53, 1644.
36 R. D. Deegan, O. Bakajin, T. F. Dupont, Nature 1997, 827.
37 H. Hu, R. G. Larson, Langmuir 2005, 21, 3972.
38 K. L. Maki, S. Kumar, Langmuir 2011, 27, 11347.
39 D. S. Golovko, H. J. Butt, E. Bonaccurso, Langmuir 2009, 25, 75.