合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> DHSO、AGE、TMHC构建阳离子有机硅表面活性剂DAT防水锁性能(一)
> 液体表面张力对农药效果的影响及关键作用
> 低界面张力纳米流体提高低渗透油藏压裂渗吸速率和采收率(二)
> 新型热塑性材料注塑成型模具,克服熔体在流动过程中的表面张力和气体阻碍
> 温度对甜菜碱短链氟碳表面活性剂表面张力、铺展、发泡性能影响(二)
> 桐油基衍生物钠盐的表面张力、CMC值测定、乳液稳定性、固化膜性能测试(一)
> 超微量天平应用于EPM2000玻璃纤维滤膜的快速消解
> 【表面张力】会魔法的小钉子
> 变温过程渣钢表面张力与界面张力的演变机制
> 槐糖脂的属性:脂肪酸底物和混合比例的影响——材料和方法
推荐新闻Info
-
> 界面张力仪测定不同pH值下椰子球蛋白的界面张力变化
> 内外多腔室等级乳液制备及界面张力影响因素
> 水包油型(O/W)和油包水型(W/O)乳液结构与界面稳定性
> 中性聚合物键合剂(NPBA)与奥克托今(HMX)界面张力测定及应用效果(三)
> 中性聚合物键合剂(NPBA)与奥克托今(HMX)界面张力测定及应用效果(二)
> 中性聚合物键合剂(NPBA)与奥克托今(HMX)界面张力测定及应用效果(一)
> 助剂临界胶束浓度对芒果细菌性角斑病防治药剂表面张力的影响(三)
> 助剂临界胶束浓度对芒果细菌性角斑病防治药剂表面张力的影响(二)
> 助剂临界胶束浓度对芒果细菌性角斑病防治药剂表面张力的影响(一)
> 腰果酚醛树脂嵌段聚醚破乳剂表面/界面性能、油滴破裂速率常数测定(二)
低表面张力物系在规整填料塔中的流体力学性能和传质性能(一)
来源:化工进展 浏览 1097 次 发布时间:2024-09-25
填料塔作为重要的传质分离设备,被广泛应用于化工领域,涉及精馏、吸收、萃取、蒸发等单元操作过程。近年来规整填料的发展使填料塔应用更广泛,并日益大型化。规整填料塔具有效率高、处理量大、压降小、放大效应小等优点。自20世纪80年代以来,许多学者研究了不同规整填料塔的传质过程,提出了一系列传质模型。
规整填料塔中,影响传质性能的因素很多,Zuiderweg等认为表面张力对传质的影响显著大于密度、黏度、扩散系数等其他物性。之后很多学者研究了表面张力梯度引起的Marangoni效应对精馏传质的影响,研究物系大多集中在能形成较大表面张力梯度的有机物水溶液。由于表面张力与其他物性密切相关,且表面张力对传质过程的影响机理相当复杂,至今没有一个满意的结论。近年来,精馏领域的传质过程研究主要集中在过程模拟,国内外对新型高比表面积规整填料的传质过程的实验研究还不多,有关工业尺寸的规整填料塔则更少涉及。
综上所述,鉴于规整填料塔在现代分离工业中的重要地位以及表面张力对其传质性能的影响,研究低表面张力物系在规整填料塔中的传质过程对于完善高性能填料的传质数据,深入研究流动和传质机理具有重大的理论意义和应用价值。本文选用具有低表面张力的正庚烷-甲基环己烷物系,在内径400mm的不锈钢精馏塔中,测定目前广泛使用的经典高效规整填料Mellapak 500Y和750Y的流体力学性能和传质性能。
1实验方法
1.1实验装置
实验流程如图1所示。实验装置由主塔、副塔、冷凝系统、加热系统四大部分组成。主塔为内径400mm的不锈钢精馏塔,填料层装填高度1.8m,每盘填料高200mm,共9盘。主塔塔顶上升蒸汽及其冷凝液在副塔内进行换热,得到饱和的回流液,避免过冷现象的发生。塔釜再沸器采用热导油加热,换热面积为27.5m2。塔顶冷凝器采用冷却水制冷,换热面积为29.9m2。实验采用常压下的全回流操作。
全塔共设有4个取样口。1#取样口设在塔顶回流处;2#取样口设在距填料底部1200mm处;3#取样口设在距填料底部400mm处;4#取样口设在填料段以下。填料段的取样口,即2#、3#取样口的样式如图2所示。取样器沿水平方向向上倾斜3°放置,伸入填料段的部分为半圆管,长度为200mm,直径为10mm。这样设计以保证液相样品顺利地由填料中取出,且取出的液相样品具有代表性。
1.2实验物系
有机物水溶液的表面张力和表面张力梯度都很大,Marangoni效应十分显著,一般情况下正、负体系分离效率相差很大,表面张力梯度的影响超过了表面张力本身;而纯有机物系的表面张力低,在塔内形成的表面张力梯度小,Marangoni效应不明显,一般情况下正体系的效率比负体系略高。实验旨在研究低表面张力物系在规整填料塔中的传质过程,故选择表面张力较低的纯有机物系;对于纯有机物系,表面张力正体系和负体系的传质性能相差不大,为了实验研究的方便,选取正庚烷-甲基环己烷为实验物系。正庚烷-甲基环己烷物系的表面张力较低,实验范围内接近中性体系。实验物系的表面张力数据见表1。
1.3实验数据处理
1.3.1计算HETP
由4个取样口的组成数据可以计算填料塔的理论板当量高度,根据定义有式(1)。
Z=N*HETP=NogHog (1)
正庚烷-甲基环己烷物系沸点差很小,分离程度不高,可近似将平衡线视为直线,气提因子如式(2)。
总体积传质系数Kya是气相总传质系数和有效界面积的乘积,直观反映了塔内传质的好坏。气相流率一定时,测定Nog随塔高的变化,可以得出气相总体积传质系数随塔高的变化,分析塔内传质行为。