表面张力仪 | 界面张力仪 | LB膜分析仪 - 全球领先的表面张力测量技术

热线:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

荣誉客户/Honor customers

               

拜耳公司

               

同济大学

                

联合大学

                

美国保洁

                

美国强生

               

瑞士罗氏

当前位置首页 > 新闻中心

采用壳聚糖-三聚磷酸酯-百里香纳米颗粒经热喷墨打印而成的新型活性包装材料——结论、致谢!

来源:Unisense 浏览 15 次 发布时间:2021-09-13

结论


与对照薄膜相比,印刷薄膜表现出改善的水蒸气阻隔性能。 Qo 印刷薄膜比混合薄膜更有效。 与对照薄膜相比,印刷的 Qo 薄膜的断裂伸长率降低,拉伸强度增加,而印刷的混合薄膜的伸长率和拉伸强度均增加。


Th 纳米封装印刷的效率取决于印刷层数、接触角、添加到分散体中的甘油量和薄膜类型。 两种薄膜中 Th 的传递都在 8 天时完成,表明这些薄膜是传递活性化合物的良好平台。 然而,NQoThs 在薄膜中的分布表现出不同的释放曲线; Qo 薄膜在第一阶段表现出突释,而混合薄膜表现出较慢的释放。


与使用 NQos 印刷的薄膜相比,使用 NQoThs 印刷的薄膜对革兰氏阳性菌(L. innocua 和 S. aureus)和革兰氏阴性菌(S. typhimurium、E. aerogenes、P. aeruginosa 和 E. coli)表现出更高的 AM和对照膜。 革兰氏阴性菌(鼠伤寒沙门氏菌、产气大肠杆菌和大肠杆菌)获得了最佳结果。


这些发现表明,可印刷纳米技术的使用可以改善由可再生生物聚合物制备的薄膜的功能,因为这些薄膜可以提高水蒸气阻隔性,作为传递活性化合物的良好平台,并增加抗菌活性。 因此,这些薄膜可能有助于开发新的食品包装材料。


致谢


作者要感谢 INNOVA-CORFO N度 12IDL2-13621 的财政支持。 我们感谢智利圣地亚哥大学的 Fernando Osorio 博士和 Ricardo Andrade 博士对接触角测量的帮助。 我们还要感谢 Conicyt 授予 Nelson Caro 的博士奖学金。


参考


Abdollahi, M., Rezaei, M., & Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111(2), 343e350.


Abugoch, L. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. In Advances in food and nutrition (Vol. 58, pp. 1e31). Elsevier INC.


Abugoch, L., Romero, N., Tapia, C., Rivera, M., & Silva, J. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium Quinoa Willd.) protein isolates. Journal of Agricultural and Food Chemistry, 56(12), 4745e4750.


Abugoch, L., Tapia, C., Villaman, M., Yazdani-Pedraman, M., & Díaz-Dosque, M. (2011). Characterization of quinoa protein chitosan blend edible films. Food Hydrocolloids, 25, 879e886.


Adame, D., & Beall, G. W. (2009). Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science, 42, 545e552.


Akbari, B., Pirhadi, M., & Zandrahim, M. (2011). Particle size characterization of nanoparticles: a practical approach. Iranian Jorurnal of Material Science and Engineering, 8(2), 48e56.


Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493e496.


Berger, J., Reist, M., Mayer, J., Felt, O., Peppas, N., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57, 19e34.


Bharadwaj, R. K. (2001). Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules, 34(26), 9189e9192.


Bouten, P., Zonjee, M., Bender, J., Yauw, S., van Goor, H., van Hest, J., et al. (2014). The chemistry of tissue adhesive materials. Progress in Polymer Science, 39(7), 1375e1405.


Bradford, M. (1976). Rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anaytical Biochemistry, 72, 248e254.


Brandsch, J., Mercea, P., Rüter, M., Tosa, V., & Piringer, O. (2002). Migration modeling as a tool for quality assurance of food packaging. Food Additives & Contaminants, 19, 22e41.


Buanz, A., Saunders, M., Basit, A., & Gaisford, S. (2011). Preparation of personalizeddose salbutamol sulphate oral films with thermal ink-jet printing. Pharmaceutical Research, 28(10), 2386e2392.


Butler, B., Vergano, P., Testin, R., Bunn, J., & Wiles, J. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5), 953e955.


Calvo, P., Remu~nan-Lopez, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63, 125e132.


Caner, C., Vergano, P., & Wiles, J. (1998). Chitosan films: mechanical and permeation properties as affected by acid, plasticizer, and storage. Journal of Food Science, 63(6), 1049e1053.


Clapper, J. D., Pearce, M. E., Guymon, C. A., & Salem, A. K. (2008). Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications. Biomacromolecules, 9(4), 1188e1194.


Colla, E., Sobral, P., & Menegalli, F. (2006). Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.


Journal of Agricultural and Food Chemistry, 54, 6645e6653. Cortez, M., Martínez, A., Ezquerra, J., Graciano, A., Rodriguez, F., & Castillo, M. (2010).


Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82, 305e315. Davis, T., Yezek, L., Pinheiro, J., & van Leeuwen, H. (2005). Measurement of Donnan potentials in gels by in situ microelectrode voltammetry. Journal of Electroanalytical Chemistry, 584(2), 100e109.


De Britto, D., & Assis, O. B. G. (2012). Chemical, biochemical, and microbiological aspects of chitosan quaternary salt as active coating on sliced apples. Revista Espa~nola de Ciencia Y Tecnología de Alimento, 32(3), 599e605.


De Moura, M., Aouada, F., Avena-Bustillos, R., McHugh, T., Krochta, J., & Mattoso, L. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448e453.


Di Pierro, P., Sorrentino, A., Mariniello, L., Giosafatto, C., & Porta, R. (2011). Chitosan/ whey protein film as active coating to extend Ricotta cheese shelf-life. Lebensmittel- Wissenschaft Und-Technologie, 44(10), 2324e2327.


Du, W.-L., Niu, S.-S., Xu, Y.-L., Xu, Z.-R., & Fan, C.-L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 75(3), 385e389.


Dutta, P., Tripathi, S., Mehrotra, G., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173e1182.


Ely, D., Garcia, R. E., & Thommes, M. (2014). OstwaldeFreundlich diffusion-limited dissolution kinetics of nanoparticles. Powder Technology, 257, 120e123. Falguera, V., Quintero, J., Jimenez, A., Mu~noz, J., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22, 292e303. Fan, J.-M., Ma,W., Liu, G.-Q., Yin, S.-W., Tang, C.-H., & Yang, X.-Q. (2014). Preparation and characterization of kidney bean protein isolate (KPI)-chitosan (CH) composite films prepared by ultrasonic pretreatment. Food Hydrocolloid, 36, 60e69. Fernandes, S., Freire, C., Silvestre, A., Neto, C., Gandini, A., Berglund, L., et al. (2010). Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 81, 394e401. Ferreira, C., Nunes, C., Delgadillo, I., & Lopes-da-Silva, J. A. (2009). Characterization of chitosan-whey protein films at acid pH. Food Research International, 47(7), 807e813. Freudenberg, U., Zimmermann, R., Schmidt, K., Holger Behrens, S., & Werner, C. (2007). Charging and swelling of cellulose films. Journal of Colloid and Interface Science, 309, 360e365. de Gans, B.-J., Duineveld, P., & Schubert, U. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced Materials, 16(3), 203e213. Garsuch, V., & Breitkreutz, J. (2010). Comparative investigations on different polymers for the preparation of fast-dissolving oral films. Journal of Pharmacology and Pharmacotherapeutics, 62(4), 539e545. Genina, N., Janben, M., Breitenbach, A., Breitkreutz, J., & Sandler, N. (2013). Evaluation of different substrates for inkjet printing of rasagiline mesylate. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 1075e1083. Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48, 44e49. Ghasemnezhad, M., Zareh, S., Rassa, M., & Sajedi, R. H. (2013). Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of the Science of Food and Agriculture, 93(2), 368e374. Goy, R. C., de Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ci^encia e Tecnologia, 19(3), 241e247. Grob, K. (2008). The future of simulants in compliance testing regarding the migration from food contact materials into food. Food Control, 19(3), 263e268. Guarda, A., Rubilar, J., Miltz, J., & Galotto, M. (2011). The antimicrobial activity of microencapsulated thymol and carvacol. International Journal of Food Microbiology, 146(2), 144e150. Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. (2013). Preparation and functional properties of fish gelatinechitosan blend edible films. Food Chemistry, 136(3e4), 1490e1495. Jia, D., Fang, Y., & Yao, K. (2009). Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films. Food and Bioproducts Processing, 87, 7e10. Khan, M. S., Fon, D., Li, X., Tian, J., Forsythe, J., Garnier, G., et al. (2010). Biosurface engineering through ink jet printing. Colloids and Surfaces B: Biointerfaces, 75(2), 441e447. Khan, T. A., Peh, K. K., & Chang, H. S. (2000). Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. Journal of Pharmaceutical Sciences, 3(3), 303e311. Khoee, S., Sattari, A., & Atyabi, F. (2012). Physico-chemical properties investigation of cisplatin loaded polybutyladipate (PBA) nanoparticles prepared by w/o/w. Materials Science and Engineering C, 32(5), 1078e1086. Kipphan, H. (2001). Handbook of print media: Technologies and production methods (pp. 137e141). Springer Science & Business Media. Kong, M., Chen, X., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144, 51e63. Kurek, M., Brachais, C.-H., Nguimjeu, C., Bonnotte, A., Voilley, A., Galic, K., et al. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97(8), 1232e1240. Kurek, M., Galus, S., & Debeaufor, F. (2014). Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1, 56e67. Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 81(3), 167e249. Lavertu, M., Xia, Z., Serreqi, A. N., Berrada, M., Rodrigues, A., Wang, D., et al. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, 32(6), 1149e1158. Lopez-Leon, T., Ortega-Vinuesa, J., Bastos-Gonzalez, D., & Elaissari, A. (2014). Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: a Hofmeister effect study. Journal of Colloid and Interface Science, 426, 300e307. Majeti, N., & Kumar, R. (2000). A review: chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1e27. McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899e903. Melendez, P., Kane, K., Ashvar, C., Albrecht, M., & Smith, P. (2008). Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. Journal of Pharmaceutical Sciences, 97(7), 2619e2636. Müller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 47, 3e19. Muzzarelli, R. (1977). Chitin (p. 326). Oxford: Pergamon Press. National Committee for Clinical Laboratory Standards. (1990). Performance standards for antimicrobial disk susceptibility tests. Approved standard M2eA4, forth ed., Villanova, Pa. NCh1151.Of1976. (1999). Laminas y películas plasticas e Determinacion de las propiedades de traccion. NORMA CHILENA OFICIAL (p. 13). NCh2098.Of2000. (2000). Películas de recubrimiento organico e Determinacion de la transmision de vapor de agua. NORMA CHILENA OFICIAL (p. 13). Nelson, D., & Cox, M. (2006). Lehninger principles of biochemistry (4th ed., pp. 75e81). New York: Freeman and Company. Olsson, E., Johansson, C., & J€arnstr€om, L. (2014). Montmorillonite for starch-based barrier dispersion coatingdPart 1: the influence of citric acid and poly(- ethylene glycol) on viscosity and barrier properties. Applied Clay Science, 97e98, 160e166. Pan, K., Chen, H., Davidson, M., & Zhong, Q. (2014). Thymol nanoencapsulated by sodium caseinate: Physical and antilisterial properties. Journal of Agricultural and Food Chemistry, 62(7), 1649e1657. Pardeike, J., Strohmeier, D., Schr€odl, N., Voura, C., Gruber, M., Khinast, J., et al. (2011). Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. International Journal of Pharmaceutics, 420, 93e100. Paseiro-Losada, P., Simal Lozano, J., Abuín, S., Lopez Mahía, P., & Simal Gandara, J. (1993). Kinetics of the hydrolysis of bisphenol A diglycidyl ether (BADGE) in water based food simulants. Implications for legislation on the migration on BADGE-type epoxy resins into foodstuffs. Fresenius' Journal of Analytical Chemistry, 345, 527e532. Pereda, M., Amica, G., & Marcovich, N. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87(2), 1318e1325. Pereda, M., Aranguren, M., & Marcovich, N. (2008). Characterization of chitosan/ caseinate films. Journal of Applied Polymer Science, 107(2), 1080e1090. Perez-Gago, M., & Krochta, J. (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. Journal of Agricultural Food Chemistry, 49(2), 996e1002. Philo, M., Fordham, P., Damant, A., & Castle, L. (1997). Measurement of styrene oxide in polystyrenes, estimation of migration to foods, and reaction kinetics and products in food simulants. Food and Chemical Toxicology, 35(8), 821e826. Qiu, M., Jiang, H., Ren, G., Huang, J., &Wang, X. (2012). Effect of chitosan coatings on postharvest green asparagus quality. Carbohydrate Polymers, 92(2), 2027e2032. Rabea, E., Badawy, M., Stevens, C., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6),1458e1465. Ramos, M., Jimenez, A., Peltzer, M., & Garrigos, C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513e519. Rinaudo, M., Milas, M., & Le Dung, P. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules, 15(5), 281e285. Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531e539. Scoutaris, N., Alexander, M. R., Gellert, P. R., & Roberts, C. J. (2011). Inkjet printing as a novel medicine formulation technique. Journal of Controlled Release, 156(2), 179e185. Shi, A.-M., Wang, L.-J., Li, D., & Adhikari, B. (2013). Characterization of starch films containing starch nanoparticles Part 1: physical and mechanical properties. Carbohydrate Polymers, 96(2), 593e601. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bionanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2), 84e95. Tapia, C., Montezuma, V., & Yazdani-Pedram, M. (2008). Microencapsulation by spray coagulation of diltiazem HCl in calcium alginate-coated chitosan. AAPS PharmSciTech, 9, 1198e1206. Torres, M., Aimoli, C., Beppu, M., & Frejlich, J. (2005). Chitosan membrane with patterned surface obtained through solution drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1e3), 175e179. Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32(3), 235e245. Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein-chitosan-sunflower oil edible film: mechanical, barrier and structural properties. LWT e Food Science and Technology, 50(2), 531e537. Vargas, M., Albors, A., Chiralt, A., & Gonzalez-Martínez, C. (2009). Characterization of chitosan-oleic acid composite films. Food Hydrocolloids, 23(2), 536e547. Wazed Ali, S., Rajendran, S., & Joshi, M. (2011). Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 83(2), 438e446. Wiles, J. L., Vergano, P. J., Barron, F. H., Bunn, J. M., & Testin, R. F. (2000).Water vapor transmission rates and sorption behavior of chitosan films. Journal of Food Science, 65(7), 1175e1179. Yamaguchi, I., Iizuka, S., Osaka, A., Monma, H., & Tanaka, J. (2003). The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1e3), 111e118. Yixiang, X., Xi, R., & Milford, A. H. (2006). Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 99(4), 1684e1691. Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosanestarch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering C, 30, 891e897. Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starchechitosan composite films as a function of acid solvent types. Carbohydrate Polymers, 84(1), 335e342.


采用壳聚糖-三聚磷酸酯-百里香纳米颗粒经热喷墨打印而成的新型活性包装材料——摘要、简介

采用壳聚糖-三聚磷酸酯-百里香纳米颗粒经热喷墨打印而成的新型活性包装材料——材料和方法

采用壳聚糖-三聚磷酸酯-百里香纳米颗粒经热喷墨打印而成的新型活性包装材料——结果与讨论

采用壳聚糖-三聚磷酸酯-百里香纳米颗粒经热喷墨打印而成的新型活性包装材料——结论、致谢!

本文关键字: 相关标签:表面张力仪

返回列表