合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> R1336mzz(Z))纯质与POE润滑油组成的混合物的表面张力测定
> 气溶胶固定剂PAM-b-PVTES合成路线及GPC、DSC、表面张力等性能测试(四)
> 矿井瓦斯防治:表面活性剂溶液表面张力、泡沫特性及对甲烷缓释效应(三)
> SRA减缩剂浓度对溶液表面张力、砂浆凝结时间、水泥水化的影响(三)
> 温度对延展型表面活性剂界面张力的影响规律
> 表面张力驱动加工方法实现复杂构型多孔陶瓷的高性能制造
> 海洋环境表面活性物质来源及对海洋飞沫气溶胶数浓度、粒径分布、理化性质的影响(三)
> 接触角迟滞时气~液界面张力的温度敏感性对液滴蒸发过程的影响——结果分析、结论
> 正丁醇水溶液表面张力的测定原理及计算过程
> 下雨天开车雨水影响视线,肥皂涂层破坏水的表面张力
推荐新闻Info
-
> 烧结矿致密化行为研究:不同碱度条件下熔体的表面张力、表观黏度值(三)
> 烧结矿致密化行为研究:不同碱度条件下熔体的表面张力、表观黏度值(二)
> 烧结矿致密化行为研究:不同碱度条件下熔体的表面张力、表观黏度值(一)
> 如何提高非离子表面活性剂的表面张力预测精度
> 不同水淹程度的油藏环境下微生物提高采收率、采出液的表面张力与界面张力的变化(二)
> 不同水淹程度的油藏环境下微生物提高采收率、采出液的表面张力与界面张力的变化(一)
> 新型助排剂配方组分、对表/界面性能的影响及助排效果(三)
> 新型助排剂配方组分、对表/界面性能的影响及助排效果(二)
> 新型助排剂配方组分、对表/界面性能的影响及助排效果(一)
> 电喷雾质谱离子源技术优化策略:降低外鞘液表面张力,加速液滴溶剂蒸发
草甘膦药液表面张力变化对其物理性状与生物活性的影响
来源:植物保护 浏览 1284 次 发布时间:2023-06-13
通过添加有机硅助剂和丙三醇调节草甘膦药液的表面张力和黏度,测定其对草甘膦药液液滴的物理性状及生物活性的影响。结果表明:降低药液的表面张力,雾滴的铺展直径增加,干燥时间缩短,药液的黏度以及在杂草叶片表面的最大稳定持留量没有显著性变化;草甘膦对杂草的防效表现为先升高后降低,对阔叶杂草最高目测防效和鲜重防效可提高42%和41%,对禾本科杂草防效可提高37%和37%。增加草甘膦的药液黏度,药液在杂草叶片上的最大稳定持留量增加,表面张力降低,对雾滴的干燥时间和铺展直径影响很小;草甘膦对阔叶杂草最高目测防效和鲜重防效可提高42%和41%,对禾本科杂草的防效可提高42%和42%。适当降低草甘膦药液的表面张力或增加其黏度均可提高其对杂草的防除效果。
表面张力对草甘膦药液其他物理性状的影响
改变草甘膦药液的表面张力,其生物活性最佳区间是表面张力在22~24mN/m,药液的黏度在6.58~6.7mPa·s之间,液滴的铺展直径在7~7.4mm,干燥时间在14.52~14.98min,龙葵和稗草叶片表面的最大稳定持留量分别在19.23~19.86、18.72~19.16mg/cm2之间,对龙葵和稗草的目测防效最高可增加42%和37%左右,鲜重防效最高可增加41%和37%。通过改变草甘膦药液的黏度,其最佳活性区间为黏度超过14.5mPa·s,表面张力低于31.5mN/m,液滴的铺展直径达到4.83mm,干燥时间低于21.49min,龙葵的最大稳定持留量超过23.18mg/cm2,稗草的最大稳定持留量超过25.10mg/cm2,对龙葵和稗草的目测防效都可提高42%,鲜重防效可提高42%和41%。
通过试验结果可以发现药液物理性状的改变与药效间存在着某些相关性,与鲁梅研究结果相一致。降低药液表面张力,铺展直径增加,干燥时间缩短,此结果与姜咏芳研究结果一致。表面张力对黏度、最大稳定持留量没有显著性影响。刘支前曾报道展布性与药效似乎无直接关系,草甘膦的叶面吸收与药液的展布性有负相关关系;而本研究中铺展直径与草甘膦的生物活性成正相关,只有在液滴的铺展直径极大的情况下,展布性才与生物活性成负相关。增加草甘膦制剂的黏度,最大稳定持留量增加,表面张力降低,对干燥时间和铺展直径影响很小;草甘膦的生物活性也逐渐增加,达到最大值后趋于平稳。
通过本研究可以说明适当地降低草甘膦制剂的表面张力或增加黏度均可提高除草剂的生物活性。除草剂活性能否充分发挥往往决定于雾滴在杂草叶表面的黏着、展布、湿润、渗透与传导。不同杂草的叶片结构及生理机制往往对药液理化性状和药液敏感性不同,本研究中液滴的铺展直径、干燥时间均采用石蜡模拟植物叶片蜡质层结构,仅能体现药液理化性状的相对变化趋势,而不同类型的杂草对药液物理性状和药液敏感性需进一步研究。